Learned Collision Avoidance Policy for Distributed Multi-Robot Navigation in Warehouses

Jia Pan City University of Hong Kong

Problems we try to solve

Different choices for warehouse automation

Number of Items Per Goods Type

Autonomous agents

Autonomous agents

More energy-efficient More complex task Fewer human workers

Much slower

00

Thus only for specific applications

Concession in which the

04 10 B

Overview

Multi-agent navigation challenge

• How to enable a **large number** agents **efficiently** work **together** in a warehouse?

Centralized solutions

- Using barcode tracks
- Centralized or distributed task / goal assignments
- Mostly centralized path planning for all agents

Kiva

Similar systems: Geek+, HKVISION, etc.

Significant changes to the scenario $oxtimes$	Not space efficient 🟵
Not energy efficient 🛞	Robot alone; no human co-workers 🛞
A centralized scheduler 🛞	Optimal navigation plans 😊

Distributed solutions

• Many methods are based on reciprocal velocity obstacles (RVO) [Jur van den Berg, 2008]

Inputs:

- An agent's velocity and preferred velocity (aiming at the goal)
- All neighboring agents' velocities and positions
 Output:

The agent's new velocity, outside the union of RVOs and closest to the preferred velocity

Distributed solutions X

CALU: Collision Avoidance with Localization Uncertainty Claes et al. 2012

Need inter-robot communication 😕

Generalized Reciprocal Collision Avoidance Daman Bareiss and Jur van den Berg, 2015

Need overhead motion capture system \otimes

The Hybrid Reciprocal Velocity Obstacle Jamie Snape et al. 2011

Need overhead motion capture system & AR markers igodot

Other problems of RVO

- Parameter tuning is rather difficult 😕 😕
 - Different parameters \rightarrow different behaviors
 - Many parameters; no clear guidance about tuning
- Agent-level planning/navigation algorithm 🙁 🔅
 - First need the pipeline of segmentation, recognition and tracking to identify nearby agents or moving obstacles
 - Difficult to be robust
- Suboptimal policies due to partial information 😕
- No way to fine-tune the navigation policy for a specific scenario or application <a>C

Completely distributed navigation system "seems" to be possible

Robots navigate as humans

Decision making based on sensor measurements

 Using raw LIDAR/camera data; avoid troubles for segmentation, recognition, and tracking

Training data

- Given an agent
 - Randomly sample its velocity and preferred velocity
 - Randomly sample a set of agents in its neighborhood
 - Velocities and goals of these agents are also randomly sampled
- Get the LIDAR data (with additional noise added)
- Select the agent's new velocity by running RVO simulator for one time step
 - Try a set of different RVO parameters
 - Remove RVO failure cases
 - Augment data using symmetries

Training data

A sampled data and the RVO result

Quantization setting for velocities

Supervised learning

- Given sensor measurements & preferred velocities
- Output a reactive velocity for collision avoidance

Differences with RVO?

- Avoid the parameter tuning difficulty in RVO
 - Fuse RVO policies with different parameters
 - Data clearance removes bad behaviors of each policy
 - Combine different RVO policies' strengths
- From agent-level to sensor-level planning
 - The input to the controller is the sensor data
 - No need for complex vision pipelines
 - Easier to transfer to different robots and environments with obstacles
- Also benefit from the RVO's (correct) local collision avoidance heuristic

Experiments

- Fully distributed and parallel system
- Non-holonomic robot dynamics
- Training data:
 - Scenarios without any static obstacles
 - Robots are of the same size
 - Only in simulation
- Test data
 - Scenarios with obstacles with different shapes
 - Robots with different size
 - Both simulation and real robots

Experiment platform

- Differential driven robots
- 180-degree 2D laser scanner
- Each robot observes other robots via on-board 2D laser scanner.

Real robots (1vs3)

Real robots (2vs2)

Real robots (4 circles)

Simulated robots

Pros and Cons

- Compared with RVO variants
 - No tedious parameter tuning 😊
 - Better generalization for static obstacles, robots with different shapes, and robots with complex dynamics ⁽²⁾
- Compared with centralized methods
 - Better use of free spaces 🙂
 - Better scalability 🙂
 - But suboptimal 😕
- Solution: use reinforcement learning to improve trajectory quality for a given scenario/task

Optimize the navigation policy using reinforcement learning

- Given some initial policy π_0
- For k-th iteration
 - Select one agent *s*
 - All other agents use policy π_{k-1}
 - Agent s updates policy from π_{k-1} to π_k using DDPG [Lillicrap 2015]
 - Repeat until convergence

More natural and faster movements

Next step: robot platforms

• 10 to 20

Next step: add human coworkers

- More difficult than multi-robot navigation or robot collision avoidance in static environments
- Human-human collision avoidance policy
- Human-robot & robot-human collision avoidance policy
- Human's policies are different with robots and have higher variance

Navigation through human crowds

(a) Polaroid Cube+, (b) Three cameras (c) DJI OSMO is used motion cameras for mounted on a 3D- as a mechanical stabi-video recording.
 printed holder

Data collection similar to [Giusti 2016]

Navigation through human crowds (preliminary result)

Fast Collision Avoidance

Conclusions

- Multi-robot navigation control for warehouses
- Distributed instead of centralized policy
- Sensor-level instead of agent-level planning
- Reinforcement learning to improve optimality
- Eventual goal: minimize the quality gap between distributed planning and centralized planning

Students wanted

- Perception for robotic manipulation
 - Tracking & reconstruction for manipulation
 - Bonus: background on slam / vision
- Advanced manipulation policies
 - Trajectory/task planning, deep reinforcement learning
 - Bonus: background on optimal control / deep learning
- Design of manipulation devices
 - Task-specific design & optimization of grippers & fixtures
 - Bonus: sensor fabrication / control / learning

Recognition and tracking

- Would be useful for improving the distributed navigation policy for heterogonous robots or human-robot teaming
- Navigation policy can be used to help improve the vision task quality
- Vision task can be used to further improve navigation performance